Statistical Comparisons of Multiple Classifiers
نویسندگان
چکیده
منابع مشابه
Statistical Comparisons of Classifiers over Multiple Data Sets
While methods for comparing two learning algorithms on a single data set have been scrutinized for quite some time already, the issue of statistical tests for comparisons of more algorithms on multiple data sets, which is even more essential to typical machine learning studies, has been all but ignored. This article reviews the current practice and then theoretically and empirically examines se...
متن کاملClassifier comparison using precision
New proposed models are often compared to state-ofthe-art using statistical significance testing. Literature is scarce for classifier comparison using metrics other than accuracy. We present a survey of statistical methods that can be used for classifier comparison using precision, accounting for inter-precision correlation arising from use of same dataset. Comparisons are made using perclass p...
متن کاملOnline multiple people tracking-by-detection in crowded scenes
Multiple people detection and tracking is a challenging task in real-world crowded scenes. In this paper, we have presented an online multiple people tracking-by-detection approach with a single camera. We have detected objects with deformable part models and a visual background extractor. In the tracking phase we have used a combination of support vector machine (SVM) person-specific classifie...
متن کاملMultiple classifiers applied to multisource remote sensing data
The combination of multisource remote sensing and geographic data is believed to offer improved accuracies in land cover classification. For such classification, the conventional parametric statistical classifiers, which have been applied successfully in remote sensing for the last two decades, are not appropriate, since a convenient multivariate statistical model does not exist for the data. I...
متن کاملA Study on Classification Approaches across Multiple Database Relations
Classification is an important task in data mining and machine learning, which has been studied extensively and has a wide range of applications. Lots of algorithms have been proposed to build accurate and scalable classifiers. Most of these algorithms can only applied to single “flat“ relations, whereas in the real world most data are stored in multiple tables. As converting data from multiple...
متن کامل